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System Model

System Model

We consider a MIMO system with n0 antennas at the sender side and
m0 antennas at the receiver side.

We will consider not only independent MIMO channels, but also
correlated MIMO channels.

Messages are encoded into codewords x of suitable length n. For
simplicity, we assume n = d · n0, where d is some positive integer,
and then let m ≜ d ·m0.

In order to recover the transmitted messages at the receiver side, we
need to receive d consecutive words, denoted by y .

Haiwen Cao (IE@CUHK) ITW 2022, Mumbai, India November 1–2, 2022 4 / 16



System Model

System Model

Definition (MIMO detection)

Mathematically, the problem can be formulated in the following way:

y = H̃x + w , (1)

where

H̃ ≜

H1

. . .

Hd

 , Hi ∈ Cm0×n0 for all i ∈ [d ],

and where the entries of w = (wi )i∈[m] are i.i.d. according to CN (0, σ2).
We consider quasi-static MIMO channels here, that is,
H1 = · · · = Hd = H0, where H0 is sampled from some known distribution.

We will consider MIMO matrices with i.i.d. entries and MIMO matrices
with correlated entries in this talk.
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System Model

System Model

Definition (MIMO channel models)

IID matrices: we consider MIMO matrices H0 with i.i.d. entries
according to CN (0, 1

m0
).

Jakes model: we consider MIMO matrices H0 constructed according
to the Jakes model, that is, H0 ≜ L1/2HiidR1/2,

where Hiid is with entries being i.i.d. according to CN (0, 1
m0

),

where L with size m0 ×m0 is given by Li,j ≜ J0(|i − j | · π),

where R with size n0 × n0 is given by Ri,j ≜ J0(|i − j | · π),

where J0(·) is the zero-order first-kind Bessel function.
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SPARCs and NUV Priors

Sparse Regression Codes

· · · · · · · · · · · ·
logM bits logM bits

L sections

The message u

0 0 · · · a1 0 · · · 0 0 0 · · · a2 0 · · · 0 · · · 0 0 · · · aL 0 · · · 0

M M

L sections

The vector β

The codeword x of length n is of the form Aβ, i.e., x = Aβ.

The matrix A of size n ×ML is the so-called design matrix and its
entries are i.i.d. Gaussian ∼ N (0, 1/n) .

In an actual implementation, the Gaussian design matrix is usually
replaced by a (row-permuated) Hadamard matrix.
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SPARCs and NUV Priors

NUV Priors

There are a few previous results on normals with unknown variances
(NUVs) priors listed chronologically.

The idea behind NUV priors was commonly used in sparse Bayesian
learning (2001).

Keusch et al. (2021) proposed a new method for estimating binary
input signals using (binary-enforcing) NUV priors.

Marti et al. (2021) applied Keusch’s proposed method to the MIMO
detection problem, which only considers uncoded modulation scheme.

Previous works only consider NUV priors for scalar constraint sets. In our
work, we generalize it to NUV priors for structured and sparse vector
constraint sets and apply our proposed method to the MIMO detection
problem with coded data transmission.
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SPARCs and NUV Priors

NUV Priors

Definition (NUV priors for a single vector)

For simplicity, a binary case, i.e., a constraint set with two candidates
{a,b} is illustrated as follows. The (improper) NUV prior is constructed as

ρ (β0,θ) ≜ N (β0|a, σ2
a · I) · N (β0|b, σ2

b · I),

where θ ≜ (σ2
a, σ

2
b)

⊺
. Here, the variance vector θ is unknown.

For an estimation problem, e.g., the estimation of β0 ∈ {a,b} based on
the channel observation y = β0 + w , the unknown variance vector θ is
obtained via a maximum-a-posterior (MAP) estimator, i.e.,

θ̂ ≜ argmax
θ

ρ(θ|y) = argmax
θ

∫ ∞

−∞
p(y |β0)ρ(β0,θ)dβ0.

Once θ̂ is given, we estimate β̂0 via a MAP estimator, i.e.,

β̂0(θ̂) ≜ argmax
β0

p(y |β0)ρ(β0, θ̂).
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Definition (NUV priors for a single vector)

For simplicity, a binary case, i.e., a constraint set with two candidates
{a,b} is illustrated as follows. The (improper) NUV prior is constructed as

ρ (β0,θ) ≜ N (β0|a, σ2
a · I) · N (β0|b, σ2

b · I),

where θ ≜ (σ2
a, σ

2
b)

⊺
. Here, the variance vector θ is unknown.

Defining µθ ≜
σ2

ab+σ2
ba

σ2
a+σ2

b
and σ2

θ ≜
σ2

aσ
2
b

σ2
a+σ2

b
, we obtain

β̂0(θ̂) =
s2µθ̂ + σ2

θ̂
y

s2 + σ2
θ̂

.

It is readily seen that β̂0(θ̂) will be either a or b exactly when one of the
components of the variance vector θ̂ = (σ2

a, σ
2
b) is zero.
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SPARCs and NUV Priors

NUV Priors for SPARCs

The decoding of SPARCs is a straightforward extension from the
previously discussed case to general linear systems. Concretely,

the channel observation y = Aβ + w =
L∑

ℓ=1

Aℓβℓ + w , where

A ≜ (A1|A2| · · · |AL), β
⊺ ≜ (β

⊺
1 |β

⊺
2 | · · · |β

⊺
L);

the likelihood function p(y |β) = N (Aβ|y , σ2 · I);

the corresponding NUV prior ρ(β,θ) ≜
L∏

ℓ=1

ρ(βℓ,θℓ);

ρ(βℓ,θℓ) ≜
M∏
k=1

N (βℓ|a
[k]
ℓ , σ2

a[k]
ℓ

· I) and θℓ ≜ (σ2

a[1]
ℓ

, · · · , σ2

a[M]
ℓ

)
⊺
for

ℓ ∈ [L].
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SPARCs and NUV Priors

NUV Priors for SPARCs

We use the expectation-maximization (EM) algorithm to approximate the
parameter estimation, i.e.,

θ̂(j+1) =
L∑

ℓ=1

M∑
k=1

argmax
σ2

a[k]
ℓ

Ep(β|y ,θ̂(j))[lnN (βℓ|a
[k]
ℓ , σ2

a[k]
ℓ

· I)].

It is readily seen that all individual parameters are given by

(σ2

a[k]
ℓ

)(j+1) =
1

M

(
M∑
k̂=1

Var[(βℓ)k̂ ] +
M∑
k̂=1

(
E[(βℓ)k̂ ]

)2
+nPℓ − 2

√
nPℓE[(βℓ)k ]

)
. (EM1)
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SPARCs and NUV Priors

NUV Priors for SPARCs

Once the variance vector θ̂(j) is given, the whole statistical model for
estimating β is shown as above. The posterior distribution of β can be
estimated via Gaussian message passing thanks to the NUV priors provided
for β.
Assume the prior distribution of β is N (µβ,Σβ), then the mean vector µ̃β

and the covariance matrix Σ̃β of the posterior distribution are as follows:

Σ̃β =
(
Σ−1

β + σ−2 · A⊺A
)−1

, (EM2)

µ̃β = Σ̃β ·
(
Σ−1

β µβ + σ−2 · Aŷ
)
. (EM3)
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SPARCs and NUV Priors

An EM-NUV algorithm for MIMO detection

Computing Eqs.(EM1)-(EM3) together iteratively comprises the so-called
EM-NUV algorithm for decoding SPARCs.
Replacing A with H̃A, the EM-NUV algorithm works for SPARCs-encoded
MIMO detection. More specifically, the original MIMO detection problem
can be reformulated as decoding SPARCs with a modified design matrix,
i.e.,

y = H̃x + w

= H̃(Aβ) + w = (H̃A)β + w .

The most time-consuming part of this algorithm is to compute the
covariance matrix via (EM2) since it involves a matrix multiplication and a
matrix inversion.
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SPARCs and NUV Priors

A Hadamard-based Gaussian GAMP algorithm

Computational complexities can be significantly reduced as follows:

apply the Gaussian generalized approximate message passing (GAMP)
algorithm to the considered overall statistical model, which reduces
computational complexity from O(n3) to O(n2).

replace the Gaussian design matrix with the Hadamard-based design
matrix and do some approximations, which reduces computational
complexity from O(n2) to O(n log(n)).
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Simulation Results

Simulation Results

We consider the following setup for our simulation results.

we choose the rate of SPARCs R to be 0.5 and the size of each
section M to be 4,

we choose the size of the MIMO system m0 × n0 to be 32× 32,

we choose the number of information bits k to be 64,

we choose the damping factors αβ and αs to be 0.8 and 0.8,
respectively,

unless otherwise stated, we choose the hyperparameter σ̃2 to be the
noise variance σ2.
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Simulation Results

Simulation Results

We consider MIMO matrices H0 with i.i.d. entries according to CN (0, 1
m0

).
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The figure shows the BER
performance comparison among
different algorithms and
different design matrices.

From this figure, we know that
Gaussian GAMP algorithms
work better than the
QPSK-modulated scheme in the
low-to-medium-SNR range no
matter which design matrix we
choose.
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Simulation Results

Simulation Results

Besides the i.i.d. model, we consider the Jakes model here. A simple
rejection technique is needed to tackle some stability issues commonly
appearing in AMP-style algorithms.
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The figure shows the BER
performance comparison among
different algorithms and
different design matrices for
Jakes models.

From this figure, algorithms with
this simple rejection work well
for correlated MIMO matrices of
the Jakes model while keeping
rejection rates reasonably low.
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Simulation Results
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The figure shows the
corresponding rejection rates of
our proposed Hadamard-based
Gaussian GAMP algorithm.

From this figure, there is a
dramatic decrease of the
rejection rate and no
performance improvement from
9dB to 10dB since we choose
σ̃2 = 4σ2 in the high-SNR range
(i.e., 10dB–14dB).
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Conclusion

In order to incorporate SPARCs into the NUV framework, we
generalize NUV priors for scalar constraint sets to NUV priors for
sparse vector constraint sets, and we derive the corresponding
NUV-EM algorithm accordingly.

In order to avoid matrix inversions and matrix multiplications, a
Hadamard-based Gaussian generalized AMP (GAMP) is proposed for
the MIMO detection problem.

In order to tackle some stability issues, a simple rejection technique is
presented for correlated channels.

Simulation results show that our channel coding scheme
(consistently) outperforms the previous state-of-the-art results for
independent channels and it also shows excellent performance with
reasonable rejection rates for correlated channels.
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Conclusion

Thanks!
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