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û ∈ Fk

2

Data Communication Model for SPARCs.

Haiwen Cao (IE@CUHK) ITW 2020 April 2021 4 / 17



SPARCs

Data Communication Model for SPARCs

Source
Position
Mapping

u ∈ Fk
2 SPARC

Encoding

β ∈ Rk̂

AWGN
Channel

x
∈
C

n

Channel
Decoding

y ∈ Cn

Sink
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Data Communication Model for SPARCs.

Before we move into the SPARC encoding part, we need to convert the
messages we want to transmit into a sparse structured vector β via
“position mapping”.
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The non-zero elements a` are chosen to be
√
nP`, where

L∑̀
=1

P` = P.
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This guarantees that 1
n

n∑
i=1
|xi |2 ≤ P with high probability.
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The choice of {P`} affects the finite-length performance of SPARCs and
the iterative power allocation scheme gives us the resulting {P`}.
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SPARCs

SPARC Encoding

The codeword x of length n is given by the matrix-vector
multiplication, i.e., x = Aβ.

The matrix A of size n ×ML is the so-called design matrix and its
entries are i.i.d. Gaussian ∼ CN (0, 1/n) .

In actual implementation, we usually use the suitably sub-sampled
discrete Fourier transform (DFT) matrix as the design matrix A
instead of the original design matrix in order to reduce the encoding
complexity.
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SPARCs

Various Decoders for SPARCs (over real-valued AWGNs)

At the receiver side,

the received vector y can be expressed as Aβ + w .

The additive noise vector w = (wi )i∈[n] and wi are i.i.d. CN (0, σ2)
for all i ∈ [n].

Our goal for decoding is to estimate β based on y , the design matrix
A, and the structure of β.
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SPARCs

Various Decoders for SPARCs (over real-valued AWGNs)

There are a few previous results on decoding of SPARCs (over real-valued
AWGNs) listed chronologically.

SPARCs were first introduced by Joseph and Barron (2012) and the
optimal decoder (i.e., the maximum likelihood decoder) was proposed
accordingly.

Joseph and Barron (2014) introduced an efficient decoding algorithm
called “adaptive successive decoding”.

An adaptive soft-decision successive decoder was proposed by Barron
and Cho (2012).

The approximate massage passing (AMP) decoder was first
proposed by Barbier and Krzakala (2014), and then it was rigorously
proven to be asymptotically capacity-achieving by Rush et al. (2017).
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AMP decoding for SPARCs over complex-valued AWGNs
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i := ηti

(
βt + A∗z t

)︸ ︷︷ ︸
≈ β + τ tu

, i = 1, . . . ,ML.

The additive Gaussian noise vector u has i.i.d. CN (0, 1) entries and
is independent with β.

The constants {τt} can be determined via the state evolution.

In actual implementation, we use an online estimate τ̂2t = ‖z t‖2
n .

the denoiser functions ηti (·) are the Bayes-optimal estimators.
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List Decoding

Block diagram for SPARCs concatenated with CRC codes
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Block diagram of a communication system employing SPARCs combined with CRC
codes as outer-error detection codes.
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List Decoding

CRC Encoding

There are two ways to employ CRC codes:

an “inter-section-based approach” that encodes the original message
to generate extra check sections bit by bit when we focus on the bit
error rate (BER) performance;

an “intra-section-based approach” that encodes them section by
section when we focus on the section error rate (SecER) performance.

The inter-section-based approach is illustrated via the following figure.

· · ·
...

· · · · · · · · ·
...

logM bits
· · · · · · · · ·

...

logM bits

· · · · · · · · · · · ·

K sections

· · · · · · · · ·

r sections

L
K

Haiwen Cao (IE@CUHK) ITW 2020 April 2021 10 / 17



List Decoding

List Decoding

1 Perform T iterations of AMP decoding; the resulting estimate of β̃ is
called β̃(T ).

2 For each section ` ∈
[
L̃
]
, normalizing β̃

(T )
` gives the a posterior

distribution estimate of the location of the non-zero entry of β̃`,

denoted by ˆ̃β
(T )
` .

3 For each section ` ∈
[
L̃
]
, convert the posterior distribution estimate

ˆ̃β
(T )
` into log2M bit-wise posterior distribution estimates.

4 For each codeword Ci , we establish a binary tree of depth K + r ,
where, starting at the root, at each layer, we keep at most S
branches, which are the most likely ones.

5 For each codeword Ci , once we have established such a binary tree,
list decoding will give us S ordered candidates corresponding to the
remaining S paths from the root to the leaves.
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List Decoding

AMP again

Besides the regular list decoding assisted with CRC codes, running AMP
decoding and list decoding again for wrongly decoded sections might
further improve the performance. More specifically, we can apply the
following procedure:

1 Run AMP decoding as before, except that at each iteration, fix the
“correctly decoded” parts of the message and only estimate the other
sections. When the maximum number of iteration T is reached or
some halting condition is satisfied, the algorithm outputs β̃∗.

2 Take only the wrongly decoded sections of β̃∗, denoted by β̃∗WD, and

apply the above list decoding procedure to β̃∗WD, which gives the
decoded message.
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Simulation Results

Simulation Results

We consider the following setups for our simulation results.

we choose the number of information sections L to be 1000,

we choose the size of each section M to be 512,

we choose the number of CRC code information bits K to be 100,

we use the CRC code with 8 redundant bits and its generator
polynomial is 0x97= x8 + x5 + x3 + x2 + x + 1.
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Simulation Results

Simulation Results

We consider SPARCs with overall rate R = 0.8 bits/(channel
use)/dimension, in which case RPA = 0 and the iterative power allocation
scheme gives a flat allocation.
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The figure shows the BER
performance comparison of SPARCs
with CRC codes for different list
sizes.

From this figure we deduce that
S = 64 is the best choice for the
considered setup.
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F igure shows the BER performance
comparison of low-rate SPARCs
with CRC codes using list decoding
and original SPARCs without CRC
codes using only AMP.

The figure shows that SPARCs
concatenated with CRC codes can
provide a steep waterfall-like
behavior above a threshold of
SNRb = 3.5 dB.
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We consider SPARCs with overall rate R = 1.5 bits/(channel
use)/dimension, in which case RPA ≈ 3 for the iterative power allocation
scheme.
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Conclusion

We introduced AMP decoding for SPARCs over complex-valued
AWGN channels.

We proposed a concatenated coding scheme that uses SPARCs
concatenated with CRC codes on the encoding side and uses
list decoding on the decoding side.

Simulation results showed that the finite-length performance is
significantly improved compared with the original SPARCs.
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Conclusion

Thanks!
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